Контакты

Цифровой частотомер. "Электроника и Радиотехника"домашнему мастеру! Аналоговый частотомер своими руками

Предлагаемый для самостоятельной сборки частотомер сравнительно низкочастотный, тем не менее позволяет измерять частоты до нескольких мегагерц. Разрядность измерителя частот зависит от количества установленных цифровых индикаторов. Чувствительность входа - не хуже 0,1V, максимальное входное напряжение, которое он может выдерживать без повреждения - порядка 100V. Время индикации и время измерения чередуются, длительность одного цикла — 1 сек. измерение и 1 сек. - индикация. Собран он по классической схеме, с генератором частоты 1 Гц на специализированных микросхемах-счётчиках, применяемых в частности в схемах цифровых часов:

На К176ИЕ5 собран «секундный» генератор по типовой схеме, с кварцевым «часовым» резонатором 16,384 Гц. Конденсатор С2 — подстроечный, позволяет в некоторых пределах подстраивать частоту с необходимой точностью. Резистор R1 подбирается при настройке по наиболее устойчивому запуску и генерации схемы. Цепь С3 VD1 R2 формирует короткий импульс «сброса» всей схемы в начале каждого секундного периода счёта.

Транзистор VT2 работает как ключ: когда на его коллектор поступает постоянное напряжение питания от схемы «счёта» (уровень логической «1») - он пропускает импульсы от входного формирователя, которые затем поступают на десятичные счетчики и цифровые светодиодные индикаторы. Когда же на его коллекторе появляется уровень логического «0» - коэффициент усиления транзистора резко снижается и счёт входных импульсов прекращается. Эти циклы повторяются каждую 1 сек.

Вместо К176ИЕ5 можно применить также аналогичную по функциям микросхему К176ИЕ12:

В обоих случаях используется часовой кварц на частоту 16 348 Гц (такие часто применяются, например, в «китайских» электронных часах разных размеров и видов). Но можно поставить и отечественный кварц на 32768 Гц, тогда необходимо понизить частоту в два раза. Для этого можно использовать типовую схему «делителя на 2» на триггере К561ТМ2 (имеет два триггера в корпусе). Например, как показано на рисунке выше (обведено пунктиром). Таким образом на выходе получим необходимую нам частоту (секундные импульсы).

К коллектору транзистора-ключа (КТ315 на первой схеме) подключается узел счёта и индикации на микросхемах — десятичных счётчиках-дешифраторах и цифровых светодиодных индикаторах:

Вместо индикаторов АЛС333Б1 можно без каких-то изменений в схеме использовать АЛС321Б1 или АЛС324Б1. Или любые другие подходящие индикаторы, но с соблюдением их цоколёвки. Цоколёвку можно определить по справочной литературе или же просто «прозвонить» индикатор «батарейкой» на 9V с последовательно включенным резистором 1 кОм (по засвечиванию). Количество микросхем-дешифраторов и индикаторов может быть любым, в зависимости от общей необходимой разрядности счётчика (количества цифр в показаниях).

В данном случае были использованы три имеющихся в наличии малогабаритных знакосинтезирующих индикатора типа К490ИП1 - индикаторы управляемые цифровые, красного цвета свечения, предназначенные для применения в радиоэлектронной аппаратуре. Схема управления выполнена по КМОП технологии. Индикаторы имеют 7 сегментов и децимальную точку, позволяют воспроизвести любую цифру от 0 до 9 и децимальную точку. Высота знака 2,5 мм):

Данные индикаторы удобны тем, что имеют в своём составе не только сам индикатор, но и счётчик-дешифратор, что позволяет значительно упростить схему и сделать её очень малогабаритной. Ниже приведена схема счёта-индикации на таких микросхемах:

Как видно из схемы, эти МС требуют два отдельных питания - для самих светодиодных индикаторов и для схемы счётчиков-дешифраторов. Однако напряжения питания обоих «частей» МС одинаковы, поэтому и запитать их можно от одного источника. Но от напряжения питания «индикатора» (выводы 1) зависит яркость свечения «цифр», а величина напряжения питания схемы дешифраторов (выводы 5) оказывает некоторое влияние на чувствительность и стабильность работы этих МС в целом. Поэтому при настройке эти напряжения следует подбирать экспериментально (при питании от 9 вольт можно использовать дополнительные «гасящие» резисторы, чтобы несколько понизить напряжение). При этом следует обязательно зашунтировать все выводы питания микросхем конденсаторами ёмкостью 0,1-0,3 мкФ.

Для гашения «точек» на индикаторах следует отключить напряжение +5...9 V от выводов 9 индикаторов. Светодиод HL1 - это индикатор «переполнения» счётчика. Он загорается при достижении счёта цифры 1000 и в данном случае (при наличии трёх МС-индикаторов как на этой схеме) соответственно показывает количество единиц килогерц - в данном варианте счётчик в целом может посчитать и «показать» частоту 999 Гц. Для увеличения разрядности счётчика следует, соответственно увеличить количество микросхем дешифраторов-индикаторов. В данном случае подобных микросхем было в наличии только три, поэтому пришлось добавить дополнительный узел деления частоты на 3-х микросхемах К176ИЕ4 (или аналогичных микросхемах счётчиков-делителей на 10) и соответствующий переключатель. В целом схема получилась такая:

Переключатель также управляет включением/гашением «точек» на индикаторах для лучшего визуального восприятия отображаемого значения измеряемой частоты. Он ползунковый, сдвоенный, на четыре положение (такие применяются, например, в импортных магнитолах). Таким образом при разных положениях переключателя измерение и отображение частоты имеет следующие значения и вид:

«999 Гц» - «9.99 кГц» - «99.9 кГц» - «999. кГц». При превышении значения частоты 1 МГц загорится светодиод HL2, 2 МГц — загорится дважды и т. д.

Схема входной цепи

Большое значение при измерениях частоты имеет качество входного каскада — формирователя сигнала. Он должен иметь высокое входное сопротивление чтобы не оказывать влияния на измеряемую цепь и преобразовывать сигналы любой формы в последовательность прямоугольных импульсов. В данной конструкции применена схема согласующего каскада с полевым транзистором на входе:

Эта схема частотомера, конечно, не лучшая из возможных, но всё-таки обеспечивает более-менее приемлемые характеристики. Она была выбрана в основном исходя из общих габаритов конструкции, которая получилась очень компактная. Вся схема собрана в пластиковом корпусе-футляре от зубной щётки:

Микросхемы и прочие элементы запаяны на узкой полоске макетной платы и все соединения сделаны с помощью проводов типа МГТФ. При настройке входного каскада-формирователя сигнала следует подбором сопротивлений R3 и R4 добиться установления напряжения 0,1...0,2 вольт на истоке полевого транзистора. Транзисторы здесь можно заменить на аналогичные, достаточно высокочастотные.

Дополнения

Для питания частотомера можно использовать любой сетевой адаптер с выходным стабилизированным напряжением 9 вольт и током нагрузки не менее 300 мА. Либо установить в корпус частотомера стабилизатор на микросхеме типа КРЕН на 9 вольт и питать от адаптера с выходным напряжением 12 вольт, либо брать питание непосредственно от измеряемой схемы, если там напряжение питания не менее 9 вольт. Каждую микросхему необходимо зашунтировать по питанию конденсатором порядка 0,1 мкФ (можно подпаять конденсаторы прямо на ножки «+» и «-» питания). В качестве входного щупа можно использовать стальную иглу, припаянную к входной «площадке» платы, а «общий» провод снабдить зажимом типа «крокодил».

Данная конструкция была «создана» в 1992 году и успешно работает до сих пор. Андрей Барышев.

Обсудить статью ЦИФРОВОЙ ЧАСТОТОМЕР СВОИМИ РУКАМИ

Поводом повторения данного частотомера и приставки для определения параметров неизвестных контуров послужила конструкция приемника Р-45. В дальнейшем этот "мини комплекс" облегчит намотку и настройку ВЧ контуров, контроль опорных точек генераторов и так далее. Итак, представленный в данной статье частотомер позволяет измерять частоту от 10 Гц до 60 МГц с точностью 10 Гц. Это позволяет использовать данный прибор для самого широкого применения, например измерять частоту задающего генератора, радио приёмника и передатчика, функционального генератора, кварцевого резонатора. Частотомер обеспечивает хорошие параметры и обладает хорошей входной чувствительностью, благодаря наличию усилителя и TTL-преобразователя. Это позволяет измерять частоту кварцевых резонаторов. Если использовать дополнительный делитель частоты, максимальная частота измерения может достигать 1 ГГц и выше.

Схема частотомера довольно простая, большинство функций выполняет микроконтроллер. Единственное, для микроконтроллера необходим усилительный каскад, чтобы увеличить входное напряжения с 200-300 мВ до 3 В. Транзистор, включенный по схеме с общим эмиттером, обеспечивает псевдо-TTL сигнал, поступающий на вход микроконтроллера. В качестве транзистора необходим какой-нибудь "быстрый" транзистор, я применил BFR91 - отечественный аналог КТ3198В.

Напряжение Vкэ устанавливается на уровне 1.8-2.2 вольта резистором R3* на схеме. У меня это 22 кОм, однако может потребоваться корректировка. Напряжение с коллектора транзистора прикладывается к входу счетчика/таймера микроконтроллера PIC, через последовательное сопротивление 470 Ом. Для выключения измерения, в PIC задействываются встроенные pull-down резисторы. В PIC реализован 32-битный счетчик, частично аппаратно, частично софтово. Подсчет начинается после того, как выключаются встроенные pull-down резисторы микроконтроллера, продолжительность составляет точно 0.4 секунды. По истечении этого времени, PIC делит полученное число на 4, после чего прибавляет или отнимает соответствующую промежуточную частоту, для получения реальной частоты. Полученная частота конвертируется для отображения на дисплее.

Для того, чтобы частотомер работал правильно, его необходимо откалибровать. Проще всего это сделать так: подключить источник импульсов с заранее точно известной частотой и вращая подстроечный конденсатор выставить необходимые показания. Если данный метод не подходит, то можно воспользоваться "грубой калибровкой". Для этого, выключите питание прибора, а 10 ножку микроконтроллера подсоедините на GND. Затем, включите питание. МК будет измерять и отображать внутреннюю частоту.

Если вы не можете подстроить отображаемую частоту (путем подстройки конденсатора 33 пФ), то кратковременно подсоедините вывод 12 или 13 МК к GND. Возможно, что это нужно будет сделать несколько раз, так как программа проверяет эти выводы только один раз за каждое измерение (0.4 сек). После калибровки, отключите 10 ногу микроконтроллера от GND, не выключая при этом питания прибора, чтобы сохранить данные в энергонезависимой памяти МК.

Печатную плату рисовал под свой корпус. Вот что получилось, при подаче питания выскакивает кратковременно заставка и частотомер переходит в режим измерения, тут на входе нет ни чего:

Схема приставки контур

Автор статьи схему доработал относительно первоисточника, посему оригинал не прилагаю, плата и файл прошивки в общем архиве . Теперь возьмем неизвестный нам контур - приставка для измерения резонансной частоты контура.

Вставляем в не совсем пока удобную панельку, для проверки девайса сойдет, смотрим результат измерений:

Частотомер калибровался и тестировался на кварцевом генераторе 4 МГц, результат был зафиксирован такой: 4,00052 МГц. В корпусе частотомера решил вывести питание и на приставку +9 Вольт, для этого был сделан простой стабилизатор +5 В, +9 В, его плата на фото:

Забыл добавить, плата частотомера разведена немного к верху задом - для удобства съёма pic микроконтроллера, вращении подстроечного конденсатора, минимальной длины дорожек на LCD.

Теперь частотомер выглядит вот так:

Единственное, не стал исправлять пока ошибку в надписи мгГц, а так всё на 100% рабочее. Сборка и испытание схемы - ГУБЕРНАТОР .

Обсудить статью КАК СДЕЛАТЬ ИЗМЕРИТЕЛЬ ЧАСТОТЫ

Схема простого стрелочного частотомера показана на рисунке. Основу частотомера составляет триггер Шмитта и формирователь импульсов. Триггер Шмитта, будучи потенциальным реле, преобразует сигналы синусоидальной или другой формы в прямоугольные импульсы. Эти импульсы нельзя использовать для измерения, так как их длительность зависит от амплитуды входного сигнала. Их применяют для запуска формирователя импульсов на элементах DD1.3, DD1.4, которые в совокупности с R3 и одним из конденсаторов С2-С4 образуют линию задержки с фиксированной длительностью и амплитудой. Выходные импульсы подаются на прибор, отклонение стрелки которого из-за инертности подвижной системы пропорционально среднему току, протекающему через его рамку.

Схема стрелочного частотомера 20Гц-20кГц

VD1 VD2 ограничивают выходное напряжение. длительность выходного импульса формирователя определяется постоянной времени цепочки R3,C2-C4 и должна быть примерно в 5-10 раз меньше периода наивысшей измеряемой частоты. При указанных номиналах в схеме, наивысшая измеряемая частота равна 20 кГц. Подстроечные резисторы R5-R7 используются при калибровке частотомера на полное отклонение стрелки индикатора. Калибровку частотомера можно осуществлять по образцовому генератору или частотомеру. Шкала частотомера во всем диапазоне практически вся равномерная, поэтому надо только определить начальную и конечную границы шкалы.

Источник - Партин А.И. Популярно о цифровых микросхемах (1989)

  • Похожие статьи

Войти с помощью:

Случайные статьи

  • 22.09.2014

    Принципиальная схема ус-ва показана на рис.1, ус-во предназначено для управления коллекторным электродвигателем — дрель, вентилятор и так далее. На однопереходном транзисторе VT1 собран генератор коротких положительным импульсов для управления вспомогательным тринистором VS1. Питается генератор трапецеидальным напряжением, получаемым благодаря ограничению стабилитроном VD1 положительной полуволн синусоидального напряжения(100Гц). С появлением каждой полуволны такого …

  • 02.10.2014

    Этот источник питания предназначен для питания различных уст-в от напряжения 25-30В при токе 70мА от бортовой сети автомобиля. Мультивибратор на транзисторах с мощным выходом вырабатывает импульсы с частотой около 10кГц. Далее импульсы проходя через С3 С4 далее выпрямляются, при этом происходит обрезка импульсов с помощью VD1 VD2 для стабилизации выходного …

Конструктивно прибор состоит из дисплея, образованного семью 7-сегментными светодиодными индикаторами, микроконтроллера и нескольких транзисторов и резисторов. Микроконтроллер выполняет все необходимые функции, поэтому применение каких-либо дополнительных микросхем не требуется.

Принципиальная схема прибора достаточно проста и изображена на Рисунке 2. Проект в формате Eagle (принципиальная схема и печатная плата) доступен для скачивания в секции загрузок.

Выполняемые микроконтроллером задачи просты и очевидны: подсчет количества импульсов на входе за 1 секунду и отображение результата на 7-разрядном индикаторе. Самый важный момент здесь - это точность задающего генератора (временная база), которая обеспечивается встроенным 16-разрядным таймером Timer1 в режиме очистки по совпадению (CTC mode). Второй, 8-разрядный, таймер-счетчик работает в режиме подсчета количества импульсов на своем входе T0. Каждые 256 импульсов вызывают прерывание, обработчик которого инкрементирует значение коэффициента. Когда с помощью 16-разрядного таймера достигается длительность 1 с, происходит прерывание, но в этом случае в обработчике прерывания коэффициент умножается на 256 (сдвиг влево на 8 бит). Остальное количество импульсов, зарегестрированное счетчиком, добавляется к результату умножения. Полученное значение затем разбивается на отдельные цифры, которые отображаются на отдельном индикаторе в соответствующем разряде. После этого, непосредственно перед выходом из обработчика прерывания, оба счетчика одновременно сбрасываются и цикл измерения повторяется. В «свободное время» микроконтроллер занимается выводом информации на индикатор методом мультиплексирования. В исходном коде программы микроконтроллера автор дал дополнительные комментарии, которые помогут детально разобраться в алгоритме работы микроконтроллера.

Разрешение и точность измерений

Точность измерений зависит от источника тактовой частоты для микроконтроллера. Сам по себе программный код может вносить погрешность (добавление одного импульса) на высоких частотах, но это практически не влияет на результат измерений. Кварцевый резонатор, который используется в приборе, должен быть хорошего качества и иметь минимальную погрешность. Наилучшим выбором будет резонатор, частота которого делится на 1024, например 16 МГц или 22.1184 МГц. Чтобы получить диапазон измерения до 10 МГц необходимо использовать кварцевый резонатор на частоту 21 МГц и выше (для 16 МГц, как на схеме, диапазон измерений становится немного ниже 8 МГц). Кварцевый резонатор на частоту 22.1184 МГц идеально подходит для нашего прибора, однако приобретение именно такого с минимальной погрешностью для многих радиолюбителей будет сложной задачей. В таком случае можно использовать кварцевый резонатор на другую частоту (например, 25 МГц), но необходимо выполнить процедуру калибровки задающего генератора с помощью осциллографа с поддержкой аппаратных измерений и подстроечного конденсатора в цепи кварцевого резонатора (Рисунок 3, 4).

В секции загрузок доступны для скачивания несколько вариантов прошивок для различных кварцевых резонаторов, но пользователи могут скомпилировать прошивку под имеющийся кварцевый резонатор самостоятельно (см. комментарии в исходном коде).

Входной сигнал

В общем случае на вход прибора может подаваться сигнал любой формы с амплитудой 0 … 5 В, а не только прямоугольные импульсы. Можно подавать синусоидальный или треугольный сигнал; импульс определяется по спадающему фронту на уровне 0.8 В. Обратите внимание: вход частотомера не защищен от высокого напряжения и не подтянут к питанию, это вход с высоким сопротивлением, не нагружающим исследуемую цепь. Диапазон измерений может быть расширен до 100 МГц с разрешением 10 Гц, если применить на входе соответствующий высокоскоростной делитель частоты.

Дисплей

В приборе в качестве дисплея используются семь светодиодных 7-сегментных индикаторов с общим анодом. Если яркость свечения индикаторов будет недостаточной, можно изменить номинал резисторов, ограничивающих ток через сегменты. Однако не забывайте, что величина импульсного тока для каждого вывода микроконтроллера не должна превышать 40 мА (индикаторы тоже имеют свой рабочий ток, о его величине не стоит забывать). На схеме автор указал номинал этих резисторов 100 Ом. Незначимые нули при отображении результата измерения гасятся, что делает считывание показаний более комфортным.

Печатная плата

Двухсторонняя печатная плата имеет размеры 109 × 23 мм. В бесплатной версии среды проектирования печатных плат Eagle в библиотеке компонентов отсутствуют семисегментные светодиодные индикаторы, поэтому они были нарисованы автором вручную. Как видно на фотографиях (Рисунки 5, 6, 7) авторского варианта печатной платы, дополнительно необходимо выполнить несколько соединений монтажным проводом. Одно соединение на лицевой стороне платы - питание на вывод Vcc микроконтроллера (через отверстие в плате). Еще два соединения на нижней стороне платы, которые используются для подключения выводов сегмента десятичной точки индикаторов в 4 и 7 разряде через резисторы 330 Ом на «землю». Для внутрисхемного программирования микроконтроллера автор использовал 6-выводный разъем (на схеме это разъем изображен в виде составного JP3 и JP4), расположенный в верхней части печатной платы. Этот разъем не обязательно припаивать к плате, микроконтроллер можно запрограммировать любым доступным способом.

Загрузки

Принципиальная схема и рисунок печтаной платы, исходный код и прошивки микроконтроллера -

На базе только одной микросхемы К155ЛАЗ, используя все ее логические элементы 2И-НЕ, можно построить сравнительно простой прибор, способный измерять частоту переменного напряжения примерно от 20 Гц до 20 кГц. Входным элементом такого измерительного прибора колебаний звуковой частоты служит триггер Шмитта - устройство, преобразующее подаваемое на его вход переменное напряжение синусоидальной формы в электрические импульсы такой же частоты. Без такого преобразования аналогового сигнала логические элементы работать не будут, причем триггер Шмитта "срабатывает" при определенной амплитуде входного сигнала. Если она меньше порогового значения, импульсного сигнала на выходе триггера не будет.

Начнем с опыта.

Триггер Шмитта. Пользуясь схемой, показанной на рис. 23, а, смонтируйте на макетной панели микросхему К155ЛАЗ, включив в работу только два ее логических элемента. Здесь же, на панели, разместите батареи GB1 и GB2, составленные из четырех гальванических элементов 332 или 316, и переменный резистор R1 сопротивлением 1,5 или 2,2 кОм (желательно с функциональной характеристикой А - линейной). Выводы батарей подключайте к резистору только на время опытов.

Включите питание микросхемы и по вольтметру постоянного тока установите движок переменного резистора в такое положение, при котором на левом, по схеме, выводе резистора R2, являющемся входом триггера Шмитта, будет нулевое напряжение. При этом элемент DD1.1 окажется в единичном состоянии - на его выходном выводе 3 будет напряжение высокого уровня, а элемент DD1.2 - в нулевом. Таково исходное состояние элементов этого триггера.

Рис. 23. Опытный триггер Шмитта и графики, иллюстрирующие его работу

Теперь вольтметр постоянного тока подключите к выходу элемента DD1.2 и, внимательно наблюдая за его стрелкой, начинайте плавно перемещать движок переменного резистора в сторону верхнего, по схеме, вывода, а затем, не останавливаясь, в обратную сторону - до нижнего вывода, далее - до верхнего и т. д. Что при этом фиксирует вольтметр? Периодическое переключение элемента DD1.2 из нулевого состояния в единичное, т. е., иначе говоря, появление на выходе триггера импульсов положительной полярности.

Взгляните на графики б и в на том же рис. 23, которые иллюстрируют работу триггера. Перемещением движка переменного резистора из одного крайнего положения в другое вы имитировали подачу на вход опытного устройства переменного напряжения синусоидальной формы (рис. 23.б) амплитудой до 3 В. Пока напряжение положительной полуволны этого сигнала было меньше порогового (U пор.1), устройство сохраняло исходное состояние. При достижении же порогового напряжения, равного примерно 1,7 В (в момент t 1), оба элемента переключились в противоположные состояния и на выходе триггера (вывод 6 элемента DD1.2) появилось напряжение высокого уровня. Дальнейшее повышение положительного напряжения на входе не изменило этого состояния элементов триггера. А вот при перемещении движка в обратную сторону, когда напряжение на входе триггера снизилось примерно до 0,5 В (момент t 2), оба элемента переключились в первоначальное состояние. На выходе триггера вновь появился высокий уровень напряжения.

Отрицательная полуволна не изменила этого состояния элементов, образующих триггер Шмитта, поскольку оказалась замкнутой на общий проводник источника питания через внутренние диоды входной цепи элемента DD1.1.

При следующей положительной полуволне входного переменного напряжения на выходе триггера сформируется второй импульс положительной полярности (моменты t 3 и t 4). Повторите этот опыт несколько раз и по показаниям вольтметров, подключенных ко входу и выходу триггера, постройте графики, характеризующие его работу. Они должны получиться такими же, как и те, что на графиках рис. 23. Два разных по уровню порога срабатывания элементов - наиболее характерная особенность триггера Шмитта.

Принципиальная схема предлагаемого для повторения частотомера приведена на рис. 24. Логические, элементы DD1.1, DD1.2 и резисторы R1-R3 образуют триггер Шмитта, а два других элемента той же микросхемы - формирователь его выходных импульсов, от частоты следования которых зависят показания микроамперметра РА1. Без формирователя прибор не даст достоверных результатов измерения, потому что длительность импульсов на выходе триггера зависит от частоты входного измеряемого переменного напряжения.

Конденсатор С1 - разделительный. Пропуская широкую полосу колебаний звуковой частоты, он преграждает путь постоянной составляющей источника сигнала. Диод VD2 замыкает на общий провод цепи питания отрицательные полуволны напряжения (в принципе этого диода может и не быть, поскольку его функцию способны выполнять внутренние диоды на входе элемента DD1.1), диод VD1 ограничивает амплитуду положительных полуволн, поступивших на входы первого элемента, на уровне напряжения источника питания.

Рис. 24. Принципиальная схема простейшего частотомера

С выхода триггера (вывод 6 элемента DD1.2) импульсы положительной полярности поступают на вход формирователя. Работает формирователь так. Элемент DD1.3 включен инвертором, а DD1.4 используется по своему прямому назначению-как логический элемент 2И-НЕ. Как только на входе формирователя (выводы 9, 10 элемента DD1.3) появляется напряжение низкого уровня, элемент DD1.3 переключается в единичное состояние и через него и резистор R4 заряжается один из конденсаторов С2-С4. По мере зарядки конденсатора положительное напряжение на выводе 13 элемента DD1.4 повышается до высокого уровня. Но этот элемент остается в единичном состоянии, так как на втором его входном выводе 12, как и на выходе триггера Шмитта, низкий уровень напряжения. В таком режиме через микроамперметр протекает незначительный ток. Как только на выходе триггера Шмитта появляется напряжение высокого уровня, элемент DD1.4 переключается в нулевое состояние и через микроампер-метр начинает протекать значительный ток. Одновременно элемент DD1.3 переключается в нулевое состояние, и конденсатор формирователя начинает разряжаться. Когда напряжение на нем снизится до порогового, элемент DD1.4 вновь переключится в единичное состояние. Таким образом, на выходе формирователя появляется импульс отрицательной полярности (см. рис. 23,г), в течение которого через микроамперметр протекает ток, значительно больший, чем начальный. Угол отклонения стрелки, микроамперметра пропорционален частоте следования импульсов: чем она больше, тем на больший угол отклоняется стрелка.

Длительность импульсов на выходе формирователя определяется продолжительностью разрядки включенного времязадающего конденсатора (С2, СЗ или С4) до напряжения срабатывания элемента DD1.4. Чем меньше его емкость, тем короче импульс, тем большую частоту входного сигнала можно измерить. Так, с времязадающнм конденсатором С2 емкостью 0,2 мкФ прибор способен измерять частоту колебаний ориентировочно от 20 до 200 Гц, с конденсатором СЗ емкостью 0,02 мкФ - от 200 до 2000 Гц, с конденсатором С4 емкостью 2000 пФ - от 2 до 20 кГц. Подстроечными резисторами R5 - R7 стрелку микроамперметра устанавливают на конечную отметку шкалы, соответствующую наибольшей измеряемой частоте соответствующего поддиапазона. Минимальный уровень переменного напряжения, частоту которого можно измерить, около 1,5В.

Еще раз проанализируйте графики на рис. 23, чтобы закрепить в памяти принцип работы частотомера, а затем дополните опытный триггер Шмитта деталями входной цепи и формирователя и испытайте устройство в действии на макетной панели. На это время переключатель поддиапазонов не нужен, времязадающий конденсатор, например С2, можно подключить непосредственно к выводу 13 элемента DD1.4, а в цепь микроамперметра включить один из подстроечных резисторов или постоянный резистор сопротивлением 2,2...3,3 кОм. Микроамперметр РА1 на ток полного отклонения стрелки 100 мкА такой же, как в сетевом блоке питания.

Налаживание. Закончив монтаж, включите источник питания и подайте на входные выводы 1, 2 первого элемента триггера Шмитта импульсы положительной полярности. Их источником может быть описанный выше генератор испытательных импульсов или другой аналогичный генератор. Частоту следования импульсов установите минимальную. При этом стрелка микроамперметра должна резко отклоняться на некоторый угол и возвращаться к нулевой отметке шкалы, что будет свидетельствовать о работоспособности частотомера. Если же микроамперметр не реагирует на входные импульсы, придется подобрать точнее резистор R2: его сопротивление может быть от 1,8 до 5,1 кОм.

Далее подайте на вход прибора (через конденсатор С1) переменное напряжение 3...5 В с понижающего сетевого трансформатора. Теперь стрелка микроамперметра должна отклониться на некоторый угол, соответствующий частоте 50 Гц. Подключите параллельно времязадающему конденсатору еще один такой же или большей емкости. Угол отклонения стрелки увеличится.

Точно так же можно испытать устройство на втором и третьем поддиапазонах измерения, но при входных сигналах соответствующих частот.

После этого детали частотомера можно перенести с макетной панели на монтажную плату и укрепить на ней подстроечные резисторы R5-R7 (рис. 25), а плату укрепить в корпусе, конструкция которого может быть произвольная. Конденсаторы С2 и СЗ составлены из двух конденсаторов каждый, а С4 из трех. На лицевой стенке корпуса разместите микроамперметр, переключатель поддиапазонов (например, галетный ЗПЗН или другой с двумя секциями на три положения), входные гнезда (XS1, XS2) или зажимы.

Впрочем, возможно и другое конструктивное решение: плату частотомера можно встроить в корпус блока питания и его же микроамперметр использовать при измерении частоты электрических колебаний. Шкала частотомера - общая для всех поддиапазонов измерения и практически равномерная. Поэтому надо только определить начальную и конечную границы шкалы, применительно к одному из них - к поддиапазону "20...200 Гц", после чего подогнать под нее границы частот двух других поддиапазонов измерения. В дальнейшем, при переключении прибора на поддиапазон "200...2000 Гц" результат измерений, считанный по шкале, будете умножать на 10, а при измерении в поддиапазоне "2...20 кГц" - на 100. Техника градуировки такова. Переключатель SA1 установите в положение измерения в поддиапазоне "20...200 Гц", движок подстроечного резистора R5 - в положение наибольшего сопротивления и подайте на вход частотомера от звукового генератора, например ГЗ-33, сигнал частотой 20 Гц напряжением 1,5...2 В.

Сделайте на шкале отметку, соответствующую углу отклонения стрелки микроамперметра. Затем звуковой генератор перестройте на частоту 200 Гц и подстроечным резистором R5 установите стрелку прибора на конечную отметку шкалы. После этого по сигналам звукового генератора сделайте на шкале отметки, соответствующие частотам 30, 40, 50 и т. д. до 190 Гц. Позже эти участки шкалы разделите еще на несколько частей, каждая из которых будет соответствовать численному значению частоты измеряемого сигнала.

Затем частотомер переключите на второй поддиапазон измерений, подайте на его вход сигнал частотой 2000 Гц и подстроечным резистором R6 установите стрелку микроамперметра на конечную отметку шкалы. После этого на вход прибора подайте от генератора сигнал частотой 200 Гц. При этом стрелка микроамперметра должна установиться против начальной отметки шкалы, соответствующей частоте 20 Гц первого поддиапазона. Точнее установить ее на эту исходную отметку шкалы можно заменой конденсатора СЗ или подключением параллельно ему второго конденсатора, несколько увеличивающего их общую емкость.

Аналогично подгоняйте под шкалу микроамперметра границы третьего поддиапазона измеряемых частот 2...20 кГц. Возможно, пределы измерения частоты на поддиапазонах получатся иные, или вы захотите изменить их. Делайте это подбором времязадающих конденсаторов С2-С4.

Улучшение чувствительности. А может быть вы пожелаете повысить чувствительность частотомера? В таком случае простейший частотомер придется дополнить усилителем входного сигнала, используя для этого, например, аналоговую микросхему К118УП1Г (рис.26). Эта микросхема представляет собой трехкаскадный усилитель для видеоканалов телевизионных приемников, обладающий большим коэффициентом усиления. Ее корпус с 14 выводами такой же, как у микросхемы К155ЛA3, но положительное напряжение источника питания подают на вывод 7, а отрицательное - на вывод 14. С таким усилителем чувствительность частотомера увеличится до 30...50 мВ.

Рис. 26. Усилитель, повышающий чувствительность простейшего частотомера

Колебания измеряемой частоты могут быть синусоидальными, прямоугольными, пилообразными - любыми. Через конденсатор С1 они поступают на вход (вывод 3) микросхемы DA1, усиливаются и далее через выходной вывод 10 (соединенный с выводом 9) и конденсатор СЗ подаются на вход триггера Шмитта частотомера. Конденсатор С2 устраняет внутреннюю отрицательную обратную связь, ослабляющую усилительные свойства микросхемы.

Диоды VD1, VD2 и резистор R1 (рис. 24) теперь можно удалить, а на их месте смонтировать, микросхему и дополнительные электролитические конденсаторы. Микросхему К118УП1Г можно заменить на К118УП1В или К118УП1А. Но в этом случае чувствительность частотомера несколько ухудшится.

Понравилась статья? Поделитесь ей